Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Bioorg Chem ; 147: 107380, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636432

RESUMO

The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.

2.
Angew Chem Int Ed Engl ; : e202403633, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516798

RESUMO

A glut of dinitrogen-derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large-scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3 holds promise in mitigating these environmental impacts and reducing reliance on the energy-intensive Haber-Bosch process. Herein, we report a high-performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH-KOH-H2O, for low-cost NH3 electrosynthesis. At 3,000 mA/cm2, the device with a Fe-Cu-Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno-economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe-Cu-Ni vs. $48.53 for Ni foam per kmol-NH3). The NaOH-KOH-H2O electrolyte together with the Fe-Cu-Ni ternary catalyst can enable the high-throughput nitrate-to-ammonia applications for affordable and scalable real-world wastewater treatments.

3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271484

RESUMO

Accurate approaches for quantifying muscle fibers are essential in biomedical research and meat production. In this study, we address the limitations of existing approaches for hematoxylin and eosin-stained muscle fibers by manually and semiautomatically labeling over 660 000 muscle fibers to create a large dataset. Subsequently, an automated image segmentation and quantification tool named MyoV is designed using mask regions with convolutional neural networks and a residual network and feature pyramid network as the backbone network. This design enables the tool to allow muscle fiber processing with different sizes and ages. MyoV, which achieves impressive detection rates of 0.93-0.96 and precision levels of 0.91-0.97, exhibits a superior performance in quantification, surpassing both manual methods and commonly employed algorithms and software, particularly for whole slide images (WSIs). Moreover, MyoV is proven as a powerful and suitable tool for various species with different muscle development, including mice, which are a crucial model for muscle disease diagnosis, and agricultural animals, which are a significant meat source for humans. Finally, we integrate this tool into visualization software with functions, such as segmentation, area determination and automatic labeling, allowing seamless processing for over 400 000 muscle fibers within a WSI, eliminating the model adjustment and providing researchers with an easy-to-use visual interface to browse functional options and realize muscle fiber quantification from WSIs.


Assuntos
Aprendizado Profundo , Humanos , Animais , Camundongos , Processamento de Imagem Assistida por Computador/métodos , Fibras Musculares Esqueléticas , Redes Neurais de Computação , Algoritmos
4.
Microb Biotechnol ; 17(1): e14361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902307

RESUMO

Animal breeding has made great genetic progress in increasing carcass weight and meat yield in recent decades. However, these improvements have come at the expense of meat quality. As the demand for meat quantity continues to rise, the meat industry faces the great challenge of maintaining and even increasing product quality. Recent research, including traditional statistical analyses and gut microbiota regulation research, has demonstrated that the gut microbiome exerts a considerable effect on meat quality, which has become increasingly intriguing in farm animals. Microbial metabolites play crucial roles as substrates or signalling factors to distant organs, influencing meat quality either beneficially or detrimentally. Interventions targeting the gut microbiota exhibit excellent potential as natural ways to foster the conversion of myofibres and promote intramuscular fat deposition. Here, we highlight the emerging roles of the gut microbiota in various dimensions of meat quality. We focus particularly on the effects of the gut microbiota and gut-derived molecules on muscle fibre metabolism and intramuscular fat deposition and attempt to summarize the potential underlying mechanisms.


Assuntos
Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/fisiologia , Músculos/química , Músculos/metabolismo , Carne/análise
6.
Plant Physiol ; 193(3): 2180-2196, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37471276

RESUMO

Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Temperatura Baixa , Oxirredução , Homeostase , Regulação da Expressão Gênica de Plantas
7.
Acta Biochim Pol ; 70(2): 295-304, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37220402

RESUMO

OBJECTIVE: To explore the mechanism of circular RNA (circRNA)-AnnexinA7 (ANXA7) in non-small cell lung cancer (NSCLC) cisplatin (DDP) resistance through microRNA (miR)-545-3p to target Cyclin D1 (CCND1). METHODS: DDP-resistant and non-resistant NSCLC tissues and normal tissues were collected. DDP-resistant cells (A549/DDP and H460/DDP) were constructed. circ-ANXA7, miR-545-3p, CCND1, P-Glycoprotein, and glutathione S-transferase-π in tissues and cells were measured. Analysis of circ-ANXA7 ring structure was performed, as well as detection of circ-ANXA7 distribution in cells. Cell proliferation was detected by MTT and colony formation assay, apoptosis rate was detected by flow cytometry, and cell migration and invasion were evaluated by Transwell assay. The targeting relationship between circ-ANXA7, miR-545-3p and CCND1 was verified. Measurement of tumor volume and quality in mice was performed. RESULTS: Circ-ANXA7 and CCND1 were elevated, while miR-545-3p was suppressed in DDP-resistant NSCLC tissues and cells. Circ-ANXA7 combined with miR-545-3p, which targeted CCND1 to expedite A549/DDP cell proliferation, migration, invasion, DDP resistance, but inhibited cell apoptosis. CONCLUSION: Circ-ANXA7 enhances DDP resistance in NSCLC via absorbing miR-545-3p to target CCND1 and might be a latent therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclina D1/genética , RNA Circular/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proliferação de Células , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
8.
Bioorg Chem ; 136: 106549, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119785

RESUMO

Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.


Assuntos
Síndrome de Imunodeficiência Adquirida , Fármacos Anti-HIV , Inibidores da Protease de HIV , HIV-1 , Quinolinas , Humanos , Saquinavir/uso terapêutico , Síndrome de Imunodeficiência Adquirida/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Isoquinolinas/farmacologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
9.
Poult Sci ; 102(4): 102568, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889043

RESUMO

Intramuscular fat (IMF) content is a meat quality trait of major economic importance in animal production. Emerging evidence has demonstrated that meat quality can be improved by regulating the gut microbiota. However, the organization and ecological properties of the gut microbiota and its relationship with the IMF content remain unclear in chickens. Here, we investigated the microbial communities of 206 cecal samples from broilers with excellent meat quality. We noted that the cecal microbial ecosystem obtained from hosts reared under the same management and dietary conditions showed clear compositional stratification. Two enterotypes, in which the ecological properties, including diversity and interaction strengths, were significantly different, described the microbial composition pattern. Compared with enterotype 2, enterotype 1, distinguished by the Clostridia_vadinBB60_group, had a higher fat deposition, although no discrepancy was found in growth performance and meat yield. A moderate correlation was observed in the IMF content between 2 muscle tissues, despite the IMF content of thigh muscle was 42.76% greater than that of breast muscle. Additionally, the lower abundance of cecal vadinBE97 was related to higher IMF levels in both muscle tissues. Although vadinBE97 accounted for 0.40% of the total abundance of genera in the cecum, it exhibited significant and positive correlations with other genera (accounting for 25.3% of the tested genera). Our results highlight important insights into the cecal microbial ecosystem and its association with meat quality. Microbial interactions should be carefully considered when developing approaches to improve the IMF content by regulating the gut microbiota in broilers.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Galinhas/fisiologia , Músculo Esquelético/fisiologia , Ceco , Carne/análise
10.
BMC Biol ; 21(1): 52, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882743

RESUMO

BACKGROUND: Embryonic diapause (dormancy) is a state of temporary arrest of embryonic development that is triggered by unfavorable conditions and serves as an evolutionary strategy to ensure reproductive survival. Unlike maternally-controlled embryonic diapause in mammals, chicken embryonic diapause is critically dependent on the environmental temperature. However, the molecular control of diapause in avian species remains largely uncharacterized. In this study, we evaluated the dynamic transcriptomic and phosphoproteomic profiles of chicken embryos in pre-diapause, diapause, and reactivated states. RESULTS: Our data demonstrated a characteristic gene expression pattern in effects on cell survival-associated and stress response signaling pathways. Unlike mammalian diapause, mTOR signaling is not responsible for chicken diapause. However, cold stress responsive genes, such as IRF1, were identified as key regulators of diapause. Further in vitro investigation showed that cold stress-induced transcription of IRF1 was dependent on the PKC-NF-κB signaling pathway, providing a mechanism for proliferation arrest during diapause. Consistently, in vivo overexpression of IRF1 in diapause embryos blocked reactivation after restoration of developmental temperatures. CONCLUSIONS: We concluded that embryonic diapause in chicken is characterized by proliferation arrest, which is the same with other spices. However, chicken embryonic diapause is strictly correlated with the cold stress signal and mediated by PKC-NF-κB-IRF1 signaling, which distinguish chicken diapause from the mTOR based diapause in mammals.


Assuntos
Diapausa , NF-kappa B , Animais , Embrião de Galinha , Feminino , Galinhas/genética , Transdução de Sinais , Temperatura , Serina-Treonina Quinases TOR
11.
Front Chem ; 11: 1098331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733714

RESUMO

Proteolysis targeting chimeras (PROTACs) technology can realize the development of drugs for non-druggable targets that are difficult to achieve with traditional small molecules, and therefore has attracted extensive attention from both academia and industry. Up to now, there are more than 600 known E3 ubiquitin ligases with different structures and functions, but only a few have developed corresponding E3 ubiquitin ligase ligands, and the ligands used to design PROTAC molecules are limited to a few types such as VHL (Von-Hippel-Lindau), CRBN (Cereblon), MDM2 (Mouse Doubleminute 2 homolog), IAP (Inhibitor of apoptosis proteins), etc. Most of the PROTAC molecules that have entered clinical trials were developed based on CRBN ligands, and only DT2216 was based on VHL ligand. Obviously, the structural optimization of E3 ubiquitin ligase ligands plays an instrumental role in PROTAC technology from bench to bedside. In this review, we review the structure optimization process of E3 ubiquitin ligase ligands currently entering clinical trials on PROTAC molecules, summarize some characteristics of these ligands in terms of druggability, and provide some preliminary insights into their structural optimization. We hope that this review will help medicinal chemists to develop more druggable molecules into clinical studies and to realize the greater therapeutic potential of PROTAC technology.

12.
Poult Sci ; 102(4): 102393, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805401

RESUMO

Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Feminino , Galinhas/genética , Peso Corporal/genética , Ingestão de Alimentos/genética , Ração Animal/análise
13.
Org Lett ; 25(7): 1172-1177, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36779869

RESUMO

Chiral benzoxazinones and 4H-3,1-benzoxazines as important motifs are widely found in abundant pharmaceuticals and biological molecules. We herein successfully developed the first kinetic resolution (KR) process of racemic benzoxazinones through Ir-catalyzed asymmetric intramolecular allylation, furnishing a wide range of chiral benzoxazinones and 4H-3,1-benzoxazines with excellent results via outstanding KR performances (with the s factor up to 170). This protocol exhibited broad substrate scope generality and good functional group tolerance, and the chiral 4H-3,1-benzoxazine products could be readily transformed to other useful optically active heterocycles.

14.
Mol Neurobiol ; 60(5): 2379-2396, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36652050

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) exert protective effects against pulmonary ischemia/reperfusion (I/R) injury; however, the potential mechanism involved in their protective ability remains unclear. Thus, this study aimed to explore the function and underlying mechanism of BMSC-derived exosomal lncRNA-ZFAS1 in pulmonary I/R injury. Pulmonary I/R injury models were established in mice and hypoxia/reoxygenation (H/R)-exposed primary mouse lung microvascular endothelial cells (LMECs). Exosomes were extracted from BMSCs. Target molecule expression was assessed by qRT-PCR and Western blotting. Pathological changes in the lungs, pulmonary edema, apoptosis, pro-inflammatory cytokine levels, SOD, MPO activities, and MDA level were measured. The proliferation, apoptosis, and migration of LMECs were detected by CCK-8, EdU staining, flow cytometry, and scratch assay. Dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assays were performed to validate the molecular interaction. In the mouse model of pulmonary I/R injury, BMSC-Exos treatment relieved lung pathological injury, reduced lung W/D weight ratio, and restrained apoptosis and inflammation, whereas exosomal ZFAS1 silencing abolished these beneficial effects. In addition, the proliferation, migration inhibition, apoptosis, and inflammation in H/R-exposed LMECs were repressed by BMSC-derived exosomal ZFAS1. Mechanistically, ZFAS1 contributed to FOXD1 mRNA decay via interaction with UPF1, thereby leading to Gal-3 inactivation. Furthermore, FOXD1 depletion strengthened the weakened protective effect of ZFAS1-silenced BMSC-Exos on pulmonary I/R injury. ZFAS1 delivered by BMSC-Exos results in FOXD1 mRNA decay and subsequent Gal-3 inactivation via direct interaction with UPF1, thereby attenuating pulmonary I/R injury.


Assuntos
Exossomos , MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Camundongos , Células Endoteliais/metabolismo , Exossomos/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
15.
Eur J Med Chem ; 248: 115114, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640458

RESUMO

The hybrids of delavirdine and piperdin-4-yl-aminopyrimidine (DPAPYs) were designed from two excellent HIV-1 NNRTIs delavirdine and piperidin-4-yl-aminopyrimidine via molecular hybridization. The target compounds 4a-r were prepared and evaluated for their cellular anti-HIV activities and cytotoxicities as well as the inhibitory activities against HIV-1 reverse transcriptase (RT). All the newly synthesized compounds demonstrated moderate to excellent potency against wild-type (WT) HIV-1 with EC50 values in a range of 5.7 to 0.0086 µM and against RT with IC50 values ranging from 12.0 to 0.11 µM, indicating that the DPAPYs were specific RT inhibitors. Among all, 4d displayed the most potent activity against WT HIV-1 (EC50 = 8.6 nM, SI = 2151). Gratifyingly, it exhibited good to excellent potency against the single HIV-1 mutants L100I, K103N, Y181C, Y188L, E138K, as well as the double mutant F227L + V106A. Furthermore, the preliminary structure-activity relationships were summarized, molecular modeling was conducted to explore the binding mode of DPAPYs and HIV-1 RT, and their physicochemical properties were also predicted.


Assuntos
Fármacos Anti-HIV , HIV-1 , Fármacos Anti-HIV/química , Delavirdina , Desenho de Fármacos , Transcriptase Reversa do HIV , HIV-1/metabolismo , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
16.
Poult Sci ; 101(12): 102184, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252505

RESUMO

Improving feed efficiency is one of the main goals of chicken breeding and production. The function of the digestive system, where feed is digested and nutrients are absorbed, is closely related to feed efficiency. However, the association between feed efficiency and the development of different digestive organs in chickens remains unclear. Here, we investigated the individual feed efficiency of 207 broilers during the fast-growing period with an electronic feeder and examined the characteristics of 8 organs of their digestive system (the liver, bile, proventriculus, gizzard, duodenum, jejunum, ileum, and cecum) at market age. Both the feed conversion ratio (FCR) and residual feed intake (RFI) were significantly negatively correlated with the gizzard weight (GW) and significantly positively correlated with the relative weight of the liver (RLW). Additionally, we found an obvious negative relationship between the FCR and cecal length (CL). A two-tailed t test further confirmed these correlation analysis results. Specifically, compared to birds with the lowest feed efficiencies, the GW of broilers with the highest feed efficiencies (the lowest FCR or RFI) was 22.74% and 17.97% higher, respectively. The RLW of chickens with the highest feed efficiencies was 10.82 to 13.73% less than that of chickens with the lowest feed efficiencies. In addition, we found that increased CL (5.42-12.09%) was significantly associated with better feed efficiency. Thus, our study showed that the feed efficiency of broilers was related to the development of the gizzard, liver, and cecum. These findings provide new insight into the genetic and physiological regulation of feed efficiency in broilers.


Assuntos
Ração Animal , Galinhas , Animais , Galinhas/fisiologia , Ração Animal/análise , Moela das Aves , Proventrículo , Sistema Digestório , Dieta/veterinária
17.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077516

RESUMO

The basic units of skeletal muscle in all vertebrates are multinucleate myofibers, which are formed from the fusion of mononuclear myoblasts during the embryonic period. In order to understand the regulation of embryonic muscle development, we selected four chicken breeds, namely, Cornish (CN), White Plymouth Rock (WPR), White Leghorn (WL), and Beijing-You Chicken (BYC), for evaluation of their temporal expression patterns of known key regulatory genes (Myomaker, MYOD, and MSTN) during pectoral muscle (PM) and thigh muscle (TM) development. The highest expression level of Myomaker occurred from embryonic days E13 to E15 for all breeds, indicating that it was the crucial stage of myoblast fusion. Interestingly, the fast-growing CN showed the highest gene expression level of Myomaker during the crucial stage. The MYOD gene expression at D1 was much higher, implying that MYOD might have an important role after hatching. Histomorphology of PM and TM suggested that the myofibers was largely complete at E17, which was speculated to have occurred because of the expression increase in MSTN and the expression decrease in Myomaker. Our research contributes to lay a foundation for the study of myofiber development during the embryonic period in different chicken breeds.


Assuntos
Galinhas , Desenvolvimento Muscular , Animais , Galinhas/genética , Desenvolvimento Embrionário/genética , Genes Reguladores , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo
18.
mBio ; 13(3): e0025322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35546537

RESUMO

The phytopathogenic proteobacterium Dickeya dadantii secretes an array of plant cell wall-degrading enzymes and other virulence factors via the type 2 secretion system (T2SS). T2SSs are widespread among important plant, animal, and human bacterial pathogens. This multiprotein complex spans the double membrane cell envelope and secretes fully folded proteins through a large outer membrane pore formed by 15 subunits of the secretin GspD. Secretins are also found in the type 3 secretion system and the type 4 pili. Usually, specialized lipoproteins termed pilotins assist the targeting and assembly of secretins into the outer membrane. Here, we show that in D. dadantii, the pilotin acts in concert with the scaffolding protein GspB. Deletion of gspB profoundly impacts secretin assembly, pectinase secretion, and virulence. Structural studies reveal that GspB possesses a conserved periplasmic homology region domain that interacts directly with the N-terminal secretin domain. Site-specific photo-cross-linking unravels molecular details of the GspB-GspD complex in vivo. We show that GspB facilitates outer membrane targeting and assembly of the secretin pores and anchors them to the inner membrane while the C-terminal extension of GspB provides a scaffold for the secretin channel in the peptidoglycan cell wall. Phylogenetic analysis shows that in other bacteria, GspB homologs vary in length and domain composition and act in concert with either a cognate ATPase GspA or the pilotin GspS. IMPORTANCE Gram-negative bacteria have two cell membranes sandwiching a peptidoglycan net that together form a robust protective cell envelope. To translocate effector proteins across this multilayer envelope, bacteria have evolved several specialized secretion systems. In the type 2 secretion system and some other bacterial machineries, secretins form large multimeric pores that allow transport of effector proteins or filaments across the outer membrane. The secretins are essential for nutrient acquisition and pathogenicity and constitute a target for development of new antibacterials. Targeting of secretin subunits into the outer membrane is often facilitated by a special class of lipoproteins called pilotins. Here, we show that in D. dadantii and some other bacteria, the scaffolding protein GspB acts in concert with pilotin, facilitating the assembly of the secretin pore and its anchoring to both the inner membrane and the bacterial cell wall. GspB homologs of varied domain composition are present in many other T2SSs.


Assuntos
Sistemas de Secreção Tipo II , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Dickeya , Enterobacteriaceae/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Filogenia , Secretina/genética , Secretina/metabolismo , Sistemas de Secreção Tipo II/metabolismo
19.
Front Plant Sci ; 13: 847863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557725

RESUMO

Rice is a salt-sensitive plant. High concentration of salt will hinder the absorption of water and nutrients and ultimately affect the yield. In this study, eight seedling-stage salt-related traits within a core collection of rice landraces were evaluated under salinity stress (100 mM NaCl) and normal conditions in a growth chamber. Genome-wide association study (GWAS) was performed with the genotypic data including 2,487,353 single-nucleotide polymorphisms (SNPs) detected in the core collection. A total of 65 QTLs significantly associated with salt tolerance (ST) were identified by GWAS. Among them, a co-localization QTL qTL4 associated with the SKC, RN/K, and SNC on chromosome 6, which explained 14.38-17.94% of phenotypic variation, was selected for further analysis. According to haplotype analysis, qRT-PCR analysis, and sequence alignment, it was finally determined that 4 candidate genes (LOC_Os06g47720, LOC_Os06g47820, LOC_Os06g47850, LOC_Os06g47970) were related to ST. The results provide useful candidate genes for marker assisted selection for ST in the rice molecular breeding programs.

20.
World J Emerg Med ; 13(1): 46-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35003415

RESUMO

BACKGROUND: Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury. Mesenchymal stem cell (MSC) transplantation is used to reduce tissue damage, but exosomes are more stable and highly conserved than MSCs. This study was conducted to investigate the therapeutic effects of MSC-derived exosomes (MSC-Exo) on cerebral ischemia-reperfusion injury in an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R), and to explore the underlying mechanisms. METHODS: Primary hippocampal neurons obtained from 18-day Sprague-Dawley rat embryos were subjected to OGD/R treatment, with or without MSC-Exo treatment. Exosomal integration, cell viability, mitochondrial membrane potential, and generation of reactive oxygen species (ROS) were examined. Terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end labeling (TUNEL) staining was performed to detect neuronal apoptosis. Moreover, mitochondrial function-associated gene expression, Nrf2 translocation, and expression of downstream antioxidant proteins were determined. RESULTS: MSC-Exo attenuated OGD/R-induced neuronal apoptosis and decreased ROS generation (P<0.05). The exosomes reduced OGD/R-induced Nrf2 translocation into the nucleus (2.14±0.65 vs. 5.48±1.09, P<0.01) and increased the intracellular expression of antioxidative proteins, including superoxide dismutase and glutathione peroxidase (17.18±0.97 vs. 14.40±0.62, and 20.65±2.23 vs. 16.44±2.05, respectively; P<0.05 for both). OGD/R significantly impaired the mitochondrial membrane potential and modulated the expression of mitochondrial function-associated genes, such as PINK, DJ1, LRRK2, Mfn-1, Mfn-2, and OPA1. The abovementioned changes were partially reversed by exosomal treatment of the hippocampal neurons. CONCLUSIONS: MSC-Exo treatment can alleviate OGD/R-induced oxidative stress and dysregulation of mitochondrial function-associated genes in hippocampal neurons. Therefore, MSC-Exo might be a potential therapeutic strategy to prevent OGD/R-induced neuronal injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...